Math 250 - Notes: Sect. 4.5 - Integration by Substitution

Recall: To take the DERIVATIVE of a composition of functions, we used the chain rule.

-example-
$$\frac{d}{dx}(x^2-3)^4 =$$

This means:

Practice: Find each derivative. Then, write a corresponding integral to represent the relationship.

1. $y = \sin^3 x$

$$2. \quad y = \frac{4}{\sqrt{2x-3}}$$

3. $y = \tan(x^2)$

Notice that taking the derivative using the chain rule creates a PRODUCT. To integrate a product that was created this way, we need to find a way to "undo" the chain rule . . .

The process used to evaluate these types of integrals involves a *change of variables*, and is called "integration by substitution."

-example- Evaluate: $\int \sqrt{4x+1} dx$

Step 1: Identify the "inner" function of a composition. Call this *u*.
Step 2: Find *du*.
Step 3: SUBSTITUTE everything in the original integral with an expression involving *u* or *du*.
INTEGRATE this new integral.
Step 4: Substitute BACK the original *x* expression for *u*.

GENERALIZED Integration Formulas:

1. Power Rule:

2. Trig Functions:

-examples- Evaluate each integral.

a. $\int x \sin(x^2) dx$

Math 250 - Notes: Sect. 4.5 - Integration by Substitution

b.
$$\int \frac{1}{(3x-5)^2} dx$$

c.
$$\int \frac{3x^2}{\sqrt{x^3 + 4}} dx$$

d. $\int \sin x \sqrt{\cos x} dx$

e. $\int \sec^2(1-x)dx$

*f. $\int x\sqrt{x+1}dx$

g. Compare/contrast these two integrals: A. $\int x\sqrt{x^2+1}dx$ vs. B. $\int \sqrt{x^2+1}dx$

h. Which of these integrals can be evaluated using the substitution method?

1. $\int \sin(3x) dx$ 2. $\int \sin(x^2) dx$ 3. $\int x \sin(x^2) dx$

4. $\int \sin^2 x dx$ 5. $\int \sin^2 x \cos x dx$